
Journal of Engineering Mathematics, Vol. 11, No. 4, October 1977 
Noordhoff International Publishing-Leyden 
Printed in The Netherlands 

289 

Slender-ship shallow-water flow past a slowly varying bottom 

A. P L O T K I N *  

California Institute of Technology, Engineering Science Department, Pasadena, California 91125, U.S.A. 

(Received April 21, 1976) 

S U M M A R Y  

The unsteady subcritical potential flow of a slender ship moving past a slowly varying bottom in shallow water is 
analyzed using the methods of matched asymptotic expansions and multiple scales. The hydrodynamic pressure field 
on the ship is obtained to second order in the slenderness parameter. 

1. Introduction 

Following the work of Tuck [1], a number of papers have appeared in the literature which ana- 
lyze the potential-flow hydrodynamics of a slender ship moving in shallow water using the 
method of matched asymptotic expansions. Among those that consider water of constant 
depth are Tuck [2], Newman [3], Tuck [4], Taylor and Tuck [5] and Lea and Feldman [6]. 
Plotkin [7, 8] studied the steady flow past an anchored ship in water of variable depth and then, 
in [9,10], analyzed the unsteady subcritical flow due to a slender ship moving past a wavy wall. 
In [9], the wall wavelength was the same order as the ship length, and in [10], the wall 
wavelength was smaller than the ship length but larger than the transverse dimensions of the 
ship. In the latter problem, the method of multiple scales was introduced to handle the dual 
characteristic lengths in the streamwise direction. In both of the wavy-wall cases, the bottom 
location varied only slightly from its mean position. 

In this paper, the unsteady subcritical potential flow due to a slender ship translating in 
shallow water with arbitrary slowly varying depth variation in the streamwise direction is 
analyzed. The analysis follows closely that of Tuck [1] for the solution of the constant- 
depth problem. 

2. Problem formulation 

Consider a slender ship of length 21 translating with constant speed U in shallow water. A 
Cartesian coordinate system is introduced with its origin fixed to the ship at midship, z is 
measured upward from the undisturbed free surface and x is opposite to the direction of motion. 
The system is shown in Figure 1. The beam and draft are small, of O(e), with respect to the length, 
and the hull surface is given by y = ef(x, z) in the moving system. For the water to be considered 
shallow, the water depth must also be of O(e) and the bottom is given by z -- - h(x - Ut, y). The 
depth Froude number, F = U/(gh) ~, is taken to be of O(1) and is less than one. 

For incompressible irrotational flow, the velocity is represented as the positive gradient of a 

* On leave from Aerospace Engineering Department, University of Maryland, College Park, Maryland, USA. 

Journal of Engineering Math., Vol. 11 (1977) 289-297 



290 

z Y 

zz=-h- 

Figure 1. Coordinate system. 

A. Plotkin 

velocity potential  ~0(x, y, z, t) which satisfies Laplace's equation. The complete set of equations 
is given in Plotkin [9] as 

4,xx + 4,yy + Czz = 0, in fluid domain,  (2.1) 

eVfx  + e4,xf  x + e4,zf z - 4,, = 0, on y = ef  (2.2) 

4,z + 4,xh~ + 4,yhy = 0, on z = - h ,  (2.3) 

~, + U~/x + 4,d/x + Cy~y - 4,z = 0, on z = v/, (2.4) 

4,t + U4,~ + (4,~ + 4,2 + 4,2)/2 + gz = 0, on z = v/, (2.5) 

where z = v/(x, y, t) describes the free surface and g is the gravitational acceleration. 
The bo t tom is taken to vary slowly in the streamwise direction with a length scale of O(e- 1). 

Its description is therefore 

z = - h[e(x - Ut)]. (2.6) 

It is noted that  now there are two characteristic length scales in the streamwise direction - the 
ship length of O(1) and the scale of the bo t tom variation of O(e- 1). Also, a slow time scale of 
O(e- 1) is in t roduced via equat ion (2.6). The method of multiple scales (Nayfeh [11]) is used. Let 

X 1 = x ,  X 2 = e x ,  T a = t ,  T 2 = e t ,  (2.7) 

and 

8 8 8 8 8 8 
O~ - 8 X ~  + e S X ~  ' 8 t - 8 ~  + e S ~  " (2.8) 

The velocity potential  depends independently on the variables in equat ion (2.7). 
Since e is an appropriate  scale in the vertical direction, the coordinate  Z = z/e is used. The 

solution is then of the form 

4, = 4,(xl ,  x2 ,  y, z ,  T1, T~). (2.9) 
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The method of matched asymptotic expansions is used to define the mathematical problems in 
the inner and outer regions following Tuck [1]. 

3. The inner expansion 

The inner region, in the neighborhood of the ship, is defined by the following order of magnitude 
of the coordinates with respect to the ship length 

x=O(1) ,  y, z =  O(e). (3.1) 

Introduce the inner variable Y = y/e. The velocity potentialis expanded in an asymptotic series 
in e of the form 

= etio(1) --~ e2~ (2) -{- e3{i~ (3) -Jr- . . . .  (3.2) 

Substitution into Laplace's equation yields 

.~(3) - ( 1 )  (3.3) tl-.gy"i~(1) -l- "~ZZ"i~(l) = 0, "~'YYr~(2) _1_ "~ZZrf~(2) = 0, ~(3y) + "xUZZ = -- (/)Xaal' 

The boundary conditions on the hull and bottom, equations (2.2, 2.3), become 

~(3) ~(xa~fxl/(1 q_fz2)a, ~'N'n(l) = O, ~'Nm(2)= Ufx,/(l'+ f2)}, ~'N = 

and 

on Y = f  (3.4) 

~z 1) = ~(z2) = q~(z3) = 0, on Z = -h /e ,  (3.5) 

where N is the normal in the cross-flow plane expressed in inner variables. The free-surface 
conditions, equations (2.4, 2.5), are combined and transfered to Z = 0 to become 

�9 (z 1)= 0 = (b{z z), q~(z3) = - ( ~ r ,  + 2U~b(xl~rl + U 2 ~ ) x ) / g  e" (3.6) 

Note that U2/g = O(e). The time dependence in the solution is being driven by the bottom with 
T 2 as the appropriate time scale. In fact, to O(e 2) in the inner problem, the only explicit 
appearanceoftimeinthegoverningequationsisthroughthedepthh(X 2, Tz).Itwillthereforebe 
assumed that ~(1) and q)~2) are independent of T 1. 

q~c1) satisfies Laplace's .equation in the cross-flow plane with zero normal derivative on all 
boundaries in this plane. Therefore 

4(1) = ~[)(1)(Xl, X2,  T2), 

and is arbitrary. The solution for q~(2) can be written as 

(3.7) 

~D(2) = 1~(21)(X1 ' X 2  ' T2 ) .~_ ~(22)(y~ Z ;  X1,  X2,  Y2) , 

where ~{21) is arbitrary. A suitable boundary condition for q~{22) as I YI - ,  m is 

(3.8) 

~{22) ~ u(Xx ' X2 ' T2 ) IYI + 0(1). (3.9) 
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u is determinable from conservation of mass as 

U = UcSx , (X l ) /2h (X2 ,  T2) , 

where ezs is the hull cross-section area below the plane Z = 0. 
The free-surface condition for ~b (3) becomes 

and ~(3) is also taken to be independent of T~. 
Following Tuck [1], the solution for ~(3) can be written as 

(3.10) 

(3.11) 

~(3) ~--. 1~(X1~(22) ~_ ~[}(31)(X1 ' X2 ' T2 ) _{_ ~(32)(~ Z;  X l ,  X2, T2) 

- -tin(l) v(1 - F Z ) Y  2 + (Z + h/e)2F2-l. 
2 ~ X l X l  L\ (3.12) 

The first three terms individually satisfy Laplace's equation. The first term satisfies the hull 
boundary condition. ~(31) is arbitrary. The last term satisfies the Poisson equation, (3.3), and 
the free-surface condition, (3.11). (It is noted that the solution in Tuck [1] has an error in its 
equation (4.14). Fortunately, no conclusions are drawn from it by Tuck. The last term in Eq. 
(3.12) introduces a non-zero normal component of velocity at the hull which is not taken into 
account), q~(32) is introduced for this purpose and satisfies a homogeneous problem except for 
the hull boundary condition 

~b (32) = q~x,EY(1 - F 2) -fzF2(Z + hie)I/(1 +fz2) ~. (3.13) N 

The behavior of ~b (32) as [ Y[ ~ oo can be determined from conservation of mass. The volume 
flux leaving the hull is 

f q~2)ds ~)x,[S - (3.14) U2B/ge2], 

where the integral is taken around the wetted hull cross-section and B(X 1) is the width of the 
cross-section at the waterline and is O(e). Therefore, as [Y] ~ oo 

~(32) ...+/)(Xl, 2 2  , Z2) ]y[ + o(1), (3.15) 

where v is the flux in equation (3.14) divided by 2h. 

4. The  outer expans ion  

The outer region, far from the ship, is defined by the following order of magnitude of the 
coordinates 

x, y = 0(1), z = O(e). (4.1) 

The velocity potential is expanded in an asymptotic series in e of the form 

(4.2) 
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Substitution into Laplace's equation yields 

'!)ZZ'4"(1) = "t'zzd~(2) = 0, "t.'zz~(3) ~--- --V2(/~(1), WzzA~(4) = --V2~b (2) - 2 q ~ x ~ ,  (4.3) 

where V 2 = c~Z/Sx 2 + r 

The bot tom boundary condition (2.3) becomes 

~z 1) = ~(z 2) = q~z s) = 0, q~cz4) = -(opr~hxje. (4.4) 

Equations (4.3) are integrated once with respect to Z and using equations (4.4) and the 
information that matching with the inner expansion shows ~(1) and ~b ~2) to be independent of T1, 
we get 

(~(1) = ~ ( I ) ( X 1 ,  y ;  X 2  ' g2), (1~(2) = ~b(2)(Xl, y ;  X 2  , T2), 

r162 - ( z  + h/e)V:ep "~, 

~ ) =  - (z  + h/~)(V~:~ + 2~x~) -  e/xl]hxJ~. (4.5) 

The dynamic free-surface condition (2.5) suggests an expansion for , /of the form 

// = g2/.1(2) "4- g3t](3) "4- . . .  (4.6) 

where 

= = - -(1)  (0~1)2)/2]/9e. , / ~  - U(oO?/g~, , p )  - [ U r  + r  + u ~  + ( r  + (4.7) 

Substitution of equations (4.5-4.7) into the kinematic free-surface condition (2.4) yields 

rb ~1) = 0, (1 - V2)~(x l )x  ~ -k- ~-yy 

and 

(4.3) 

(1 - Fe)d~)xl + qS(j2) = -2~b~x2 - hx2(a~/h + 2UEq~r2 + U4)~]x=]/c 2 

"~,rv.t(1)./.(1) ./,(1),4,(1) + (0~V2~0(1)/2]/C z, (4.9) 

w h e r e  r = 9h" 
Equations (4.8M.9) will be solved formally using Green's function (source) distributions. The 

appropriate Green's function is 

G(X1, y) = (2nil)-1 log(X 2 + f12y2)~, (4.10) 

where f12 = 1 - -  F 2. Note that X 2 and T2, the slow scales, are parameters in the differential 
equations entering through the Froude number F and depth h. 

The solution for q5 (1) is 

0 (1) = la(1)(~, X 2, Tz)G(X 1 - ~, y)d~, (4.11) 
oo  
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where the unknown  source strength/z (1) is allowed to be a function o f X  2 and T z. Since ~b (1) is a 

function of X 2 and T 2 only th rough  the combina t ion  X 2 - UT2, it is seen that  the te rm 
1(1 )  U ,~(1) on the r ight-hand side of equat ion (4.9) is zero. p ropor t iona l  to q~x~J2 + v'x~x2 

Let us now rewrite (4.9) as 

(1 - F2)c~(x2]x ~ + qS(,~) = - 2~b~:x2 - hx2r + R ( X  1, y; X 2, T2), (4.12) 

where this equat ion  defines R and R is seen to be the r ight-hand side for the cons tant -depth  
p rob lem of Tuck  [1]. The  solution for q5(2) is 

r = p(2)(~, X2 ' T2)G(X 1 _ ~, y)d~ 

- [2r  2 + h x ~ r  ] G ( X  1 - ~, y - a)d~dc~ 
oo,)-oo 

+ R G ( X ~  - 3, Y - e)d~da.  (4.13) 

5. Matching 

To determine the unknown  functions/~"),/z (2), 4 (~) and 4 (21) the inner and outer  expansioris 

must  be matched.  The following match ing  principle f rom Van Dyke  [ 12] is used: 
"The  m-term inner expansion of the (n-term outer  expansion) = the n- term outer  expansion 

of the (m-term inner expansion)" (5.1) 

Take  m = 3 and n = 2. The two- te rm outer  expansion is 

/:q~(1) .~_ ,g2(~(2). 

I t  has a three- term inner expansion of 

e~b(1)(X1, 0; X2, T2) + e12(1)[y[/2 - ey2(1 - FZ)(O~:x~(X,, 0; X2, T2)/2 

+ g2•(2)(Xl, 0; X2, T2) + e2/u(Z)[y[/2. (5.2) 

The  three- term inner expansion is 

~4 ") + e214(2" + 4 (22)] + e3{4~4(22) + 4 ( 3 .  + 4(32) -~ . ) .  - -  tPX l.t l 

x [(1 - F 2 ) y  2 + (Z  -b h/e)2F2]}. 

It  has a two- te rm outer  expansion of 

~4" )  + ~ulyl - ~y2(1 - r2)~b~x~(Xl ,  0; X2, T2)/2 

+ e24 (2~) + e2[u4~) + v]lyl. (5.3) 
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Equating (5.2) and (5.3) we get 

~(1) = ~b(1)(Xl, 0; X2, T2), ~(21) = ~(2)(Xl, 0; X2, T2) , 

I t(a) = 2u = U e S x , ( X l ) / h ( X 2 ,  T 2 ) ,  

It(g) = 2v + 2 u q ~  

= 2 u ~  + I ~ ( x l ~ x l [ S ( X l )  - U2B(Xa)/ge2]/h(X2, T2). (5.4) 

To O(e2), the velocity potential in the inner region is 

{ ; dp = Ue2(2zc/3h) -~ Sx~(~ ) log IX 1 - ~[d~ 
l 

+ e2 It(2)(~, Xz ' T2)G(X 1 _ ~, O)d~ 
GO 

f_ 1} + RG(X  1 - ~, - ~ ) d ~ d e  + ~(22) 
O0 O0 

~2 (1) - [2qSxlx2 + hx20(xl]/h] G(X 1 - -  ~, - -c t )d~dcc  (5.5) 
o~ oo 

The solution is seen to consist of two parts. The term in curly brackets is the constant-depth 
solution with the actual slowly varying values of depth h and Froude number F appearing. The 
second term is an O(e a) term due to the depth variation and proportional to its streamwise slope 

h x 2 .  

6. Pressure field in inner region 

The hydrodynamic pressure is obtained from the Bernoulli equation 

p = -pE~b, + U~b;, + (q~2 + ~bz + q~2)/2] ' (6.1) 

where p is the fluid density. To O(e2), the velocity potential in the inner region is 

(~ = g~)(1) _~_ 8 2 r ~ ( 2 1  ) _{_ ~(22)-] .  (6.2) 

Substitution into (6.1) and use of inner variables and equation (2.8) leads to 

P = - PUe~(~} - pe2[-q~2/2 + Uq~(x2,1)] - -  pgz[ut])(x2? ) -}- (~ i~(22)2 -~ (p(22)2)/2]. (6.3) 

The first two terms are what Tuck [1] calls the "interaction" pressure since the cross- 
sectional area appears only inside of the Green's function integrals. The last term depends on the 
local behavior at each streamwise station and is cross-section dependent. If equation (5.5) is 
used, the pressure can be considered to consist, to O(e2), of the constant-depth solution with the 
actual values of h and F and an additional term, proportional to hx=, 9iven by 

f f  f_ '  .(1) h X ~  d~dcc (6.4) PUg2(2xfl)-~ oo ~o E24~)x= + hx2q)xl/ ] (X ,  ~ - ~  -+ ~2 
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7. Discussion 

The unsteady subcriticalpotential flow of a slender ship moving past a slowly varying bottom in 
shallow water is obtained to O(e 2) where e is the slenderness parameter. The scale of the 
streamwise depth variation is O(e-a) and otherwise the depth variation is arbitrary. 

It is seen that, to O(e),it is correct to represent the solution as the constant-depth solution if the 
actual values of depth and Froude number are used. This representation is incorrect to O(e 2) 
since a term proportional to the streamwise slope of the water depth appears in the solution. 
This term can be seen in the inner region velocity potential in equation (5.5) and pressure 
distribution in (6.4). 

The solution for the slowly varying bottom differs significantly from the solution of Plotkin 
[-9, 10J for the cases with bottom scale of 0(1) and O(e~), respectively. The time dependence here 
does not enter through the differential equation but enters implicitly through the depth 
dependence on the slow scale T 2. Time is, therefore, essentially a parameter of the solution. 

Consider the first-order velocity potential in equation (5.5). It is the product of a term which 
varies with the fast scale, the ship length, and is dependent on the ship geometry, and a term, 
(flh)- 1, which varies with the slow scales, is dependent on the bottom geometry and essentially 
modulates the integral term. 

8. Sample  problem 

Consider a hull of revolution with a parabolic waterline. The width and cross-sectional area are 
given by 

B(x) = 2eBo(1 - x2/12) and S(x) = 0.5z~B02(1 - x2/F) 2. 

From equations (5.5 and 6.3), the pressure to O(e) in the inner region is (see [10]) 

l = p-  [4 - + _ 2 2 x / l +  1 2 
P (8.1) 

To model a ship moving into water of decreasing depth, consider the linear depth 
distribution 

h -- ho[1 + e(x -- Ut)/l]. 

Let Fo, the Froude number at x = t = 0, be 0.5 andlet e = 0.2. In Figure 2 the pressure along the 
ship (from equation (8.1)) is plotted for values of Ut/l = 0, 1.25 and 2.5 which correspond to 
depths at x = 0 of h0, 3ho/4 and ho/2. For comparison, the pressure corresponding to the 
constant depth h o is also plotted. For constant depth, the pressure is symmetric about x = 0. 

For the unsteady case, the pressure at any streamwise station x varies with time through the 
function F2(1 - F 2 ) - ~. This function increases monotonically with increasing F or decreasing 
h for F < 1. Therefore, for a given position along the ship the magnitude of the pressure 
increases monotonically with time for the linear depth variation. Also, since at any given time 
the depth increases linearly from the bow (x/l = - 1.0) to the stern (x/l = 1.0), the pressure 
distribution will be asymmetric with the larger magnitudes on the forward half of the ship. 
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Figure 2. First-order pressure distribution for ship with parabolic waterline of beam 2eBo, half-length l, with depth 
h = ho[1 + .2(x - Ut)/l] and Froude number based on h o of 0.5. 
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